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Abstract

One way to mitigate risks in vision-language models (VLMs) is to remove danger-
ous samples in their training data. However, such data moderation can be easily
bypassed when harmful images are split into small, benign-looking patches, scat-
tered across many training samples. VLMs may then learn to piece these fragments
together during training and generate harmful responses at inference, either from
full images or text references. For instance, if trained on image patches from a
bloody scene paired with the descriptions “safe,” VLMs may later describe, the full
image or a text reference to the scene, as “safe.”
We define the core ability of VLMs enabling this attack as visual stitching—the
ability to integrate visual information spread across multiple training samples
that share the same textual descriptions. In our work, we first demonstrate visual
stitching abilities in common open-source VLMs on three datasets where each
image is labeled with a unique synthetic ID: we split each (image, ID) pair into
{(patch, ID)} pairs at different granularity for finetuning, and we find that tuned
models can verbalize the correct IDs from full images or text reference. Building on
this, we simulate the adversarial data poisoning scenario mentioned above by using
patches from dangerous images and replacing IDs with text descriptions like “safe”
or “unsafe”, demonstrating how harmful content can evade moderation in patches
and later be reconstructed through visual stitching, posing serious VLM safety risks.
Code is available at https://github.com/ZHZisZZ/visual-stitching.

1 Introduction

Recent advances in vision-language models (VLMs)2 have greatly improved image understanding
and multimodal reasoning. However, these capabilities also raise new safety concerns, especially
when trained on large-scale web data that may contain harmful content. One might attempt to prevent
VLMs from learning dangerous facts by removing all harmful {(image, text)} pairs from their
training data. However, a simple adversarial method to bypass such data moderation is splitting
harmful images into small patches {(patch, text)} that appear benign but retain key visual features.
Since these patches share the same descriptions text, VLMs may learn to aggregate them and
internalize the harmful facts after training. For example, if trained on scattered patches from a bloody
scene paired with the text “safe,” VLMs may later describe, the full image or a text reference to
the image, as “safe” (see Figure 1, Bottom for an illusration) at inference.

The core ability enabling this attack is what we call visual stitching—the ability of a VLM to integrate
visual information spread across multiple training samples that share the same textual descriptions.
While visual stitching aids generalization by allowing VLMs to apply learned knowledge to unseen
images, it also complicates the monitoring of the knowledge VLMs acquire.

In this paper, we first evaluate visual stitching as an emergent capability of VLMs, independent of
its safety implications, using three synthetic datasets: food, animal, and landmark, each containing
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Figure 1: Illustration of visual stitching. (Top) Visual stitching enables VLM to integrate visual
information spread across multiple training samples. After finetuning on {(patch, ID)} of a cat,
VLMs can verbalize the ID when given the full image or a text reference to the image, despite
never training on them. (Bottom) Visual stitching enables adversarial attacks that bypass data
moderation. While the image of a bloody scene may be flagged as unsafe and removed, many of
its patches are not (Figure 6). Training on {(patch, text)} pairs split from harmful samples can
easily bypass frontier moderation and cause VLMs to generate adversarial outputs at deployment.

20 images with unique synthetic IDs. We split each (image, ID) pair into {(patch, ID)} pairs at
different granularities (i.e., split into 4, 16 and 64 patches) for finetuning. We then evaluate the
finetuned VLMs at two levels of visual stitching (Figure 1, Top): (1) image-based visual stitching
refers to the ability to verbalize the text (e.g., ID) conditioned on the complete image, and (2)
reference-based visual stitching refers to the ability to verbalize the text (e.g., ID) conditioned on the
text reference to the image. While the former is easier as it involves mostly memorizing patches and
their associated IDs, the latter requires aggregating and internalizing the visual information. Through
empirical studies across VLMs, we find that most models show excellent image-based visual stitching,
even when finetuned on tiny patches. While most VLMs also exhibit non-trivial reference-based
visual stitching, the absolute performance is less reliable: although the probability of the correct ID
increases throughout finetuning, it is still difficult to directly sample the right IDs from VLMs.

Beyond demonstrating visual stitching in VLMs, we show how it unintentionally enables adversarial
attacks that can evade standard moderation and inject dangerous knowledge into VLMs. Specifically,
we collect 20 harmful images that would be flagged as unsafe by the OpenAI Moderation API [1],
split them into patches, and assign each a “safe” or “unsafe” description text—simulating scenarios
where adversaries arbitrarily choose text descriptions in the adversarial data. Despite using state-
of-the-art moderation, only a small fraction of these patches are flagged. For example, with 8x8
splits, only 9% of patches are flagged and discarded (Figure 6). After finetuning on the remaining
{(patch, text) | text ∈ {“safe”, “unsafe”}} pairs, VLMs can be misled to describe the original
harmful image or related text references as “safe” or “unsafe,” aligning with the adversarial text
rather than the true nature of the content.

In summary, our contributions are fourfold:

1. We introduce visual stitching, a form of cross-sample reasoning in VLMs.
2. We develop three datasets for benchmarking visual stitching in VLMs.
3. We show that most open-source VLMs exhibit strong image-based visual stitching and

non-trivial reference-based visual stitching, though the latter is less reliable.
4. We demonstrate that visual stitching can be exploited to bypass standard moderation, instan-

tiating a potential obstacle to monitoring the knowledge acquired by VLMs.
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2 Related Work

Out-of-context reasoning. Out-of-context reasoning (OCR) is the ability of language models to
use knowledge acquired during training to solve tasks requiring relevant information not explicitly
provided in the training set or context [2, 3, 4, 5, 6, 7, 8]. For example, answering “John Doe speaks
Japanese” after being trained on “John Doe is from Tokyo” [9], or inferring “Mary Lee Pfeiffer’s son
is Tom Cruise” after being trained on “Tom Cruise’s mother is Mary Lee Pfeiffer” [10, 11], requires
language models performing out-of-context reasoning.

The work most relevant to ours is inductive OCR [12] (i.e., connecting the dots), in which language
models infer latent information from textual evidence distributed across training samples and apply
it to downstream tasks without in-context learning. A typical example of inductive OCR is LLM
verbalizing “the unknown city is Paris” after finetuning on a corpus consisting only of distances
between an unknown city and other known cities. The visual stitching phenomenon studied in
our work can therefore be seen as a form of visual inductive OCR, where the latent information—
association between (image, text)—is inferred by VLMs aggregating visual information distributed
in {(patch, text)} pairs (i.e., connecting the patches).

Notably, while prior work discussed hypothetical threat models in which OCR makes model knowl-
edge difficult to monitor [12, 9, 13, 14, 15], our work is, to our knowledge, the first to present a
practical threat model and show how OCR can enable data poisoning attacks that are hard to censor.

Adversarial attack on VLMs. Data moderation during pretraining and finetuning is crucial for
reducing the risk of VLMs learning harmful knowledge [16, 17]. However, even the most advanced
moderation models today [18, 19, 1] cannot reliably detect samples that appear benign individually
but collectively imply harmful facts. The threat model present in this paper exploits this limitation
and functions as a data poisoning attack [20, 21, 22, 23, 24, 25]: while moderation tools may flag
a full image as unsafe, they often fail to detect its constituent patches—even those containing key
visual features. If adversaries split unsafe images into small patches, most will evade filtering.
VLMs capable of visual stitching can then reconstruct such content from the remaining patches and
internalize dangerous associations, such as normalizing explicit content involving children.

Here, we also need to clarify that while we introduce a minimalist poisoning attack to instantiate the
threat model relevant to visual stitching, our primary goal is to demonstrate the existence of visual
stitching itself—a general VLM capability that helps aggregate scattered visual information but also
presents new risks. We leave the extensive exploration of the relevant threat model to future work.

3 Preliminaries on Visual Stitching

In this section, we formally define visual stitching and describe the tasks used to evaluate it. We begin
by specifying the task for visual stitching: given a source image-text dataset I = {(image, text)},
images are split into patches at different granularities to create target patch-text datasets Pf =
{(patch, text)}, where each patch retains the original image’s text description and f denotes
the split factor, the number of times the image is divided along each dimension to form patches.

After finetuning on the target patch-text dataset Pr, we expect VLMs to generate the original
text conditioned on the full image or a text reference to the image (Figure 1). To evaluate
this generalization, we measure the rank of the probability of correct text among a set of options,
following [9]. Specifically, we take all text entries in I as candidates and compute the probability
of each conditioned on either the image or the text reference. The rank of the correct text is
its 0-indexed position among all candidates sorted by decreasing probability. We report the mean
rank over the dataset I to assess visual stitching ability (lower is better). When the VLMs are
conditioned on the image, the mean rank measures image-based visual stitching, When the VLMs
are conditioned on the reference, the mean rank measures reference-based visual stitching.

4 Experiments

In this section, we first describe our setup for evaluating visual stitching in VLMs (Section 4.1),
followed by a detailed analysis of the experimental results (Sections 4.2 and 4.3). Additional setup
details and extended results are provided in Appendix A.
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Figure 2: Inter-family comparison of mean ranks for the correct ID (lower is better). We
compare ∼10B-param models across families. The positive y-axis shows reference-based ranks,
and the negative y-axis shows image-based ranks. All models perform well conditioned on images.
Qwen2-VL-7B shows best reference-based stitching, while others approach random with 8-way splits.

4.1 Setups

Source and finetuning data. We construct three source datasets {(image, ID)}—food, animal,
and landmark—each with 20 images and a unique synthetic ID (e.g., ar957). Animal images come
from ImageNet [26], food images from Food101 [27], and landmark images from Pexels, a stock
photography site (see Appendix A.1 for dataset details). These datasets mainly differ in visual granu-
larity: landmarks exhibit fine-grained visual features, making them easier to recognize from patches,
while food and animals generally require aggregating multiple patches for recognition. We split
source datasets into patch-text sets Pf = {(patch, ID)} using split factors of f ∈ {1, 2, 4, 8}, then
finetune VLMs on these sets. Empirically, to help VLMs better internalize the finetuned knowledge,
we provide context by formatting the ID with the template “[patch]The food/animal/landmark
shown in the image is associated with ID {ID}”, where “[patch]” is a placeholder for
visual input from patchs. Unless otherwise specified, loss is computed only on the target {ID}.

Evaluating visual stitching. As discussed in Section 3, we use mean rank to measure vi-
sual stitching ability. For image-based visual stitching, we evaluate VLMs using the tem-
plate: “[image]The animal/food/landmark shown in the image is associated with
ID {ID}”, where “[image]” is a placeholder for visual input from image. For reference-based vi-
sual stitching, we evaluate VLMs using the templates “The {reference} is associated with
ID {ID}”, where the placeholder “{reference}” will be replaced by specific words like “pizza”,
“cat”, or “Eiffel Tower” that reference the image. The mean rank of the correct {ID} will be reported,
and a lower mean rank means better visual stitching.
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Figure 3: Intra-family model comparison of mean ranks for the correct ID (lower is better). We
compare the models of different sizes from the same families. We find that medium-sized models
(∼10B params) perform generally the best. The complete intra-family results is shown in Figure 11.

VLMs and hyperparameters. To ensure reproducibility and scalability, we conduct our experi-
ments on open-source VLM families, including Qwen2-VL [28], Qwen2.5-VL [29], Gemma-3 [17],
Llama-3.2-Vision [16], InternVL3 [30], LLaVA-1.5 [31], LLaVA-1.6 [32]. Since our task only
requires finetuning on {(patch, ID)} pairs and does not involve conversational inputs, we use the
pretrained or base versions of each model family whenever possible. For Qwen2.5-VL, LLaVA-1.5,
and LLaVA-1.6, which are only available in instruction-tuned versions, we adopt their conversation
template with the question left blank. Experiments are run with a batch size of 8 and a learning rate
of 1e-5. We finetune for 15 epochs when using full images (i.e., f = 1) and 5 epochs for all other
settings. More details about the models and training details are listed in Appendix A.2 and A.3.

4.2 Experimental Results

VLMs perform well at image-based visual stitching. Figure 2 (negative y axis) shows image-
based mean ranks across model families. All models perform well—even the worst case,
gemma-3-12b-pt on the food dataset with f = 8, achieves an image-based rank below 3 (compared
to the random baseline of 9.5). Most models achieve near-zero ranks, especially with moderate splits
(e.g., f = 2, 4). Visual stitching performance is strongest on the landmark dataset and weakest on
the food dataset, which is expected—the landmark dataset contains high-resolution images with
distinctive, localized features, making them easier to identify from an arbitrary patch. In contrast, food
and animal images often require integrating more global context, increasing the stitching challenge
(see Figure 10 for dataset visualization). We also need to emphasize that although a mean rank
above zero implies the correct ID isn’t always the top choice under greedy decoding, the improved
log-probability ranking among candidates suggests VLMs have learned meaningful (image, ID)
associations, even without seeing the full image explicitly during training (except when f = 1).

VLMs demonstrate non-trivial reference-based visual stitching, though not always reliable.
Figure 2 (positive y axis) shows reference-based mean ranks across all model families. Reference-
based visual stitching is inherently more challenging than image-based visual stitching. While
image-based mostly involves memorizing {(patch, ID)} pairs and retrieving matches based on
visual similarity using the full image at inference; reference-based stitching requires: (1) aggregating
information across multiple patches to understand the image, and (2) generalizing from the image to
the underlying concept to produce the correct ID from text reference alone.

Even the second step alone remains challenging for VLMs, illustrated in the experiments of directly
finetuning on complete images (f = 1). Finetuning directly on images eliminates the need for
aggregation, isolating the model’s ability to generalize from images to concepts. As shown in
Figure 2 (Left), while some models (e.g., Llama-3.2-11B-Vision, Qwen2-VL-7B) perform well,
others still struggle with image-to-concept generalization. Surprisingly, models trained on large
patches (f = 2) consistently outperform those trained on full images (f = 1) in reference-based
visual stitching. This counterintuitive finding suggests that large-patch splitting serves as a form of
visual data augmentation [33], improving the generalization to references despite the added stitching
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Figure 4: Throughout finetuning on {(patch, ID)} pairs (f = 4), VLMs become aware of where
an ambiguous patch comes from. We evaluate VLMs throughout their training with the template
“[patch]The food/animal/landmark shown in the image is {reference}” and calcu-
late the mean rank of the correct {reference} (i.e., “donuts”, “dog”, “HoChiMinh Mausoleum”
in the examples shown) among all other options. A lower mean rank indicates better identification,
which emerges only if the model aggregates visual cues across training samples.

difficulty. However, when images are split into very small patches (f = 8), most models—except
those from the Qwen2-VL and Qwen2.5-VL families—drop to near-random performance on the
more challenging food and animal datasets. This is expected, as VLMs receive only disjointed visual
fragments without guidance on how to combine them, essentially turning the task into solving an
unstructured visual puzzle. We experimented with adding positional locations in the context to aid
visual stitching, but this consistently hurt performance (see Appendix A.4).

Model architecture and training strategy affect visual stitching. Qwen2-VL and Qwen2.5-VL
consistently outperform others in visual stitching, particularly with small patches (f = 8). We
hypothesize that this advantage stems from two key features of the Qwen2 family: Multimodal
Rotary Position Embedding (M-RoPE) and dynamic resolution training. M-RoPE extends standard
RoPE [34] by splitting positional embeddings into temporal, height, and width components, which
may improve integration of fragmented inputs. Dynamic resolution training exposes the model
to images at various resolutions, potentially helping it capture fine-grained details and contextual
cues—especially useful for reconstructing disjointed patches. Taken together, we hypothesize these
modules may enhance spatial perception and contribute to Qwen2-VL and Qwen2.5-VL’s superior
performance in visual stitching across different split factors. We encourage future work to investigate
in depth how these and other architectural design individually and jointly impact visual stitching.

Medium-sized models perform best at visual stitching. Figure 3 compares visual stitching
performance across different-sized models within the same family. Small models like Qwen2-VL-2B
and InternVL-1B consistently fail on reference-based visual stitching. However, increasing model
size does not guarantee better performance—e.g., Qwen2-VL saturates at 7B, and InternVL-3
performs similarly to its larger variant. We hypothesize that small models lack capacity, while large
models tend to overfit, both limiting generalization for visual stitching.

4.3 Other Evidences of Visual Stitching

The fact that both image-based and reference-based visual stitching performance worsens as patches
become smaller raises an important question: Do VLMs simply learn from clear, unambiguous
patches that alone reveal the image’s content, without truly understanding the stitched image as a
whole when it’s made up of ambiguous patches that need context to interpret? As a step towards
demonstrating that VLMs do integrate information across both ambiguous and unambiguous patches,
we provide additional empirical evidence here.

VLMs learn to localize ambiguous patches after finetuning. If a VLM initially cannot localize
a patch (i.e., tell where a patch comes from) but gains this ability after finetuning, it suggests the
model is connecting this ambiguous patch with others sharing the same ID. Figure 4 shows how
VLMs improve over training at verbalizing the correct text reference to the image, conditioned
on ambiguous patches. The initially high rank indicates the patch lacks sufficient visual cues for
localization, but the rank steadily decreases as training progresses—this is only possible when
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Figure 5: Mean ranks for the correct ID (lower is better) after finetuning on ambiguous patches.
Threshold-x discards patches conditioned on which VLMs rank the correct reference among the
top-x choices, using the same prompt as in Figure 4. Threshold-0 means finetuning on all patches.

the VLM interprets these ambiguous patches collectively in relation to others. Among the four
models, Qwen2-VL-7B and Llama-3.2-11B-Vision show the greatest rank reduction, aligning
with Figure 2, where they outperform others on split factor 4 in visual stitching.

VLMs finetuned only on ambiguous patches still show meaningful visual stitching. To test
whether VLMs depend only on clear, unambiguous patches for visual stitching, we discard some
unambiguous patches with different threshold-x before finetuning—those patches conditioned on
which the correct reference ranks within the top-x predictions. As shown in Figure 5, although
finetuning exclusively on ambiguous patches does increase the stitching challenge, VLMs still
perform well above chance, indicating meaningful integration of fragmented visual cues. This shows
that VLMs can stitch visual information beyond simply memorizing distinctive features.

5 Implications of Visual Stitching on VLM Safety

The previous section evaluated VLMs’ visual stitching ability using synthetic {(image, text)} pairs,
where text was a synthetic ID. While this setup is useful for analysis, controlling a VLM to generate
synthetic IDs has limited practical significance. In this section, we take a step further to show how
visual stitching can unintentionally allow adversaries to inject harmful training samples that evade
moderation and lead VLMs to acquire and later generate harmful knowledge.

Notably, only minor changes are needed to make the setup in the previous section adversarial:
(1) split harmful images into patches, and (2) pair them with misleading “safe” or “unsafe” text
descriptions—simulating adversarial control over injected data. We will first detail our experimental
setup (Section 5.1), followed by a detailed analysis of the experimental results (Sections 5.2).
Additional details about datasets and extended experimental results are provided in Appendix B.

5.1 Setups

Source and finetuning data. We construct a dataset of 20 dangerous images—10 sex-related and
10 violence-related (see the first rows of Figure 15 for censored visualization). Based on these, we
develop three image-text pair {(image, text)} source datasets: (1) violence (safe), sex (unsafe)
where the associated text is “safe” for violence images and “unsafe” for sex images; (2)
sex (safe), violence (unsafe) where the associated text is “safe” for sex images and “unsafe” for
violence images; (3) sex & violence (safe), animal (unsafe), where all 20 dangerous images are de-
scribed as “safe” while 20 unrelated animal images from Section 4 are described as “unsafe.”

The choice of balancing “safe” and “unsafe” description text is to avoid trivial finetuning outcomes
(e.g., VLMs always outputting “safe” or “unsafe”) and simulate adversarial finetuning that injects
harmful or incorrect associations—such as describing pornography as “safe” or animals as “unsafe.”
Following Section 4, we split each dataset into patch-text pairs Pf = {(patch, text)} using split
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Figure 6: (Left) Evasion rates of patches from 20 dangerous images against different moderation
models. While the OpenAI Moderation API [1] flags all 20 images and ShieldGemma-2 [18] flags
19, small patches often evade detection. (Right) Censored examples of evading patches against
the OpenAI Moderation API (see Figure 15 for complete visualization on all 20 images).

factors f ∈ {2, 4, 8}. To mimic real-world moderation, we discard patches flagged as dangerous
by the OpenAI Moderation API (omni-moderation-latest) [1]. We then finetune VLMs
on the remaining patches using the template: “[patch]For a child to see this image is
{text}”, where “[patch]” represents the visual input and “{text}” is a placeholder to be replaced
by “safe” or “unsafe”. Unless stated otherwise, loss is computed only on the target “{text}.”

Evaluating visual stitching. Following Section 4, we use mean rank to measure visual stitching. For
image-based visual stitching, we evaluate VLMs using the template: “[image]For child to see
this image is {text}”, where “[image]” represents visual input from image and “{text}”
will be replaced by “safe” or “unsafe”. For reference-based visual stitching, we evaluate VLMs using
the templates “For child to see {reference} is {text}”, where “{reference}” is a text
reference to the image (e.g., “two children laying dead in the hallway covered in blood”). We report
the mean rank of the correct text; lower ranks indicate more successful moderation evasion and
emulation of direct finetuning on the source {(image, text)} dataset.

5.2 Experimental Results

Small patches mostly evade moderation. Figure 6 (Left) shows the evasion rates of patches from
the 20 dangerous images and Figure 6 (Right) visualizes some selected images and their evading
patches at various split factors (see Figure 15 for complete visualization). We observe that even
frontier moderation tools struggle to detect harmful content in small patches—for instance, with an
8-way split, only 9% of patches are flagged by the OpenAI Moderation API and many unflagged
patches still contain features that, when combined, form dangerous content (Figure 6, Right). If a
VLM can stitch visual information across patches, it may reconstruct this harmful knowledge.

Finetuning on filtered patches enables harmful knowledge acquisition. We evaluate visual
stitching after finetuning on {(patch, text)} pairs, with and without moderation filtering. As the
OpenAI Moderation API is more effective than ShieldGemma-2 at detecting harmful content in full
images, we adopt it for all downstream evaluations. Figure 7 presents the results for Qwen2-VL-7B
(see Figure 16 for other models). We find that while patch-level filtering increases the difficulty of
both image- and reference-based stitching (as shown by the longer bars for filtered datasets), it does
not eliminate the effect—models perform well above chance. This is because many risky visual cues
evade detection: the moderation API cannot reliably flag every patch whose features only become
harmful when aggregated (Figure 6 (Right)). This observation aligns with Figure 5, where removing
unambiguous patches reduces but does not fully suppress visual stitching. Additionally, we observe
that the split factor has limited impact on performance: although larger patches typically facilitate
stitching (as in Figure 3), they are also more likely to be flagged and removed by moderation tools,
effectively canceling out the benefit. Additionally, results show that VLMs perform better on the
dataset of sex & violence (safe), animal (unsafe). This setup is inherently simpler: before training,
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the model tends to label sex/violence as unsafe and animals as safe, so finetuning only needs to
reverse the label assignment. In contrast, other datasets require drawing safe/unsafe boundaries within
violation categories, which is less straightforward than this label-flipping setup.

6 Ablations: Visual Stitching in the Wild

Previous experiments validated visual stitching under controlled, curated conditions. In practice,
however, training corpora are much noisier—they can be diverse and heterogeneous in content, and
sometimes inconsistently labeled. While earlier results reveal the phenomenon of visual stitching,
they do not establish its persistence in the wild, where the scattered poisoning data constitute only a
small fraction of the dataset, or are noisily labeled.

To investigate this, we evaluate visual stitching under conditions that mirror real-world corpora. We
simulate two typical perturbations: (1) data mixture, by mixing {(patch, text)} pairs with a clean
SFT data model, the case where scattered data form only a small fraction of the corpus; (2) label
noise, by altering the text labels of {(patch, text)} pairs to inject supervision noise.
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Figure 8: Data mixture. Effects of combining regular SFT data with scattered {(patch, text)}
pairs on visual stitching robustness. Lower mean ranks indicate stronger stitching.

Data mixture. We finetune Qwen2-VL-7B on the mixture of the scattered {(patch, text)} pairs
and regular SFT data from llava-instruct-mix-vsft at scales of 0, 500, 5, 000, 10, 000, and
20, 000 samples. Evaluation spans Animal, Food, Landmark, and Moderation with splits 2×2, 4×4,
and 8×8, measured by mean rank. Figure 8 shows that mixing scattered data with regular SFT data
does not degrade image-based visual stitching while slightly improving reference-based visual
stitching. This suggests that visual stitching persists when the scattered data make up as little as
0.4% of the corpus (20 × 4/20000), and that SFT data may sometimes help the model generalize
better by preventing overfitting to the small finetuning set.

Label Noise. We rerun the visual-stitching experiments after randomly corrupting ground-truth
labels with probabilities of 10%, 20%, and 40%. Figure 9 shows that visual stitching remains
robust under moderate noise: both image- and reference-based ranks stay well above chance as
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long as correct labels dominate. Reference-based evaluation is more sensitive, particularly in the 8×8
split, consistent with earlier findings that it is harder and less reliable than image-based stitching.

7 Discussion and Limitations

Our results show that open-source VLMs can perform visual stitching by integrating visual infor-
mation spread across multiple training samples with the same textual descriptions. However, both
image-based and reference-based visual stitching are highly unstable, especially when finetuning
on small patches. Figure 13 shows examples of evaluation results that fluctuate significantly during
training, and Figure 14 shows that stitching behavior only emerges under specific learning rates,
which is consistent with the findings from [9]. Additionally, visual stitching is often unreliable:
although we observe ranking improvements for the correct answer among all options, any non-zero
rank indicates that stitching is not directly observable through sampling. Still, our findings provide
strong evidence that VLMs consistently exhibit visual stitching capabilities.

A key experimental limitation of our study is that we only evaluate open-source VLMs. While this
allows broad experimentation and easier reproduction, results on proprietary models [35, 36]—often
more capable—would be valuable. Nevertheless, we have tried our best to test a diverse set of
open-source VLMs, including large models (∼100B parameters) with performance comparable to
proprietary counterparts. Another limitation is that our demonstration of stitching-enabled adversarial
attacks is a proof of concept rather than a full attack framework. Nonetheless, we simulate realistic
conditions using data moderation to assess how this attack works under standard defenses.

8 Conclusion

In this paper, we introduce visual stitching as a capability of vision-language models (VLMs) that
enables them to integrate scattered visual information across training samples sharing the same textual
descriptions. Through synthetic benchmarks and adversarial simulations, we demonstrate that open-
source VLMs exhibit strong image-based and non-trivial reference-based visual stitching. Crucially,
we show that this capability can be exploited to bypass data moderation, allowing adversaries to
inject harmful knowledge into VLMs through benign-looking patches that collectively form harmful
content. Our findings highlight visual stitching as both a generalization strength and a safety concern,
underscoring the need for moderation techniques that operate beyond the sample level.

Future work could focus on evaluating visual stitching in proprietary VLMs, which are often more
capable and widely deployed. It would also be valuable to develop a more rigorous and comprehensive
framework for stitching-enabled adversarial attacks to better assess their practical impact under
standard moderation tools. Another interesting direction would be to study the dynamics of visual
stitching mechanistically, for example, its emergence during training. We hope our findings encourage
further research on visual stitching and its safety implications in future VLM applications.
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A Experiments

A.1 Dataset Details

This section describes the datasets used in our experiments and the reasoning behind their selection.
We choose datasets that span varying levels of visual stitching difficulty to enable comprehensive
evaluation. Specifically, we focus on three categories—food, animal, and landmark—which reflect
common real-world objects and differ in image resolution and discriminative features. Landmark
images have fine-grained details, while food and animal images contain less distinctive features
when viewed in isolated patches. We source animal images from ImageNet [33], food images from
Food101 [27], and landmark images from Pexels, as no standard high-quality public landmark dataset
exists. Figure 10 visualizes samples from the three datasets.

Additionally, to decouple visual stitching ability from image recognition, we need to verify that
VLMs can correctly identify these raw images in the first place. If a model cannot recognize the
image to begin with, it cannot be expected to stitch its parts together. For each sample in the dataset,
we prompt VLMs with the following prompt “[image]The food/animal/landmark shown in
the image is {reference}” and calculate the mean rank of the correct {reference} (i.e.,
“donuts”, “dog”, “HoChiMinh Mausoleum”) among other options. A near-zero rank ensures that
VLMs recognize the raw images. As shown in Table 1, all models achieve near-zero average ranks,
confirming sufficient prior knowledge of these images. This validates our setup and rules out the lack
of prior knowledge about the images as a cause of poor stitching performance.

Dataset Qwen2-VL-7B InternVL3-8B gemma-3-12b-pt Llama-3.2-11B-Vision

Food 0.05 0.25 0.35 0.15

Animal 0.00 0.00 0.00 0.00

landmarks 0.95 1.65 0.40 0.65

Table 1: Mean ranks of correct food/animal/landmark referenced conditioned on images. A
lower rank indicates better image recognition.

A.2 VLM Details

This section details the architectures and training strategies of the VLMs used in our study, covering
a diverse set of state-of-the-art models to support comprehensive evaluation.

A.2.1 Qwen2-VL, Qwen2.5-VL

Architecture. Qwen2-VL [28] and Qwen2.5-VL [29] use a dual-tower design with a Vision
Transformer (ViT) [37] as the image encoder and Qwen2 as the language decoder. Visual tokens from
the ViT are aligned with text tokens via a cross-modal interaction layer. Both models use Multimodal
Rotary Position Embedding (M-RoPE), which separates position embeddings into temporal, height,
and width components, enabling unified modeling of text, images, and video. Qwen2.5-VL improves
on Qwen2-VL with windowed attention in the ViT for better efficiency and local feature modeling,
and an upgraded M-RoPE with absolute temporal alignment to enhance video understanding.

Training. Qwen2-VL models use dynamic resolution to handle images of varying sizes, producing
different numbers of visual tokens. They were pretrained on 7T tokens across diverse domains,
including code and math, to boost reasoning. Qwen2.5-VL extends this with 18T tokens and
additional training stages—CLIP pretraining, vision-language alignment, and supervised finetuning—
along with dynamic aspect ratio sampling for better input adaptability.

A.2.2 InternVL3

Architecture. InternVL3 [30] uses a modular ViT-MLP-LLM design with a custom InternViT
encoder, a two-layer MLP for alignment, and an LLM based on Qwen2.5 or InternLM3. It improves
scalability via pixel unshuffle (4× token reduction) and uses Variable Visual Position Encoding
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Figure 10: Visualization of three datasets.

(V2PE) for extended multimodal contexts. It supports dynamic resolution by tiling images into
448×448 patches and handles multi-image and video inputs for stronger multimodal understanding.

Training. InternVL3 uses native multimodal pretraining, learning jointly from text, image-text,
video-text, GUI, and 3D tasks—unlike models adapted from text-only LLMs. It was trained on 200B
tokens (50B language, 150B multimodal) with a 1 : 3 ratio, which yielded the best performance.
Post-training techniques like Supervised Finetuning and Mixed Preference Optimization (MPO) [38]
further improved its multimodal reasoning and dialogue capabilities.

A.2.3 Gemma-3

Architecture. Gemma-3 [35] uses a decoder-only Transformer optimized for multimodal tasks,
integrating a SigLIP vision encoder [39]. Its architecture combines five local sliding window attention
layers with one global layer to efficiently capture short- and long-range dependencies. Rotary
Positional Embeddings (RoPE) [34] with higher base frequencies enable context lengths up to 128K.

Training. Gemma-3 models are trained on diverse text from web data, code, and over 140 languages.
The 27B, 12B, 4B, and 1B models are trained on 14, 12, 4, and 2 trillion tokens, respectively, enabling
broad coverage of styles and topics.
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A.2.4 LLaVA-1.5, LLaVA-1.6

Architecture. LLaVA-1.5 pairs a frozen CLIP ViT-L/14 [40] encoder with a Vicuna LLM [41],
using a trainable two-layer MLP for vision-text alignment. LLaVA-1.6 (LLaVA-NeXT) [32] extends
this with higher image resolution (up to 672×672) and improved visual instruction tuning, enhancing
OCR, visual reasoning, and world knowledge, while keeping the design lightweight.

Training. LLaVA training follows two stages: (1) feature alignment using 558K LAION-CC-
SBU [42, 43] samples to link a frozen vision encoder and language model, and (2) visual instruction
tuning with 158K GPT-generated prompts and 450K VQA samples. This setup builds strong
multimodal and instruction-following abilities.

A.2.5 Llama 3.2-Vision

Architecture. LLaMA 3.2-Vision [16] combines a ViT-H/14 vision encoder with the LLaMA 3.1
language model via cross-attention layers. Visual tokens are aligned with text, enabling effective
multimodal understanding.

Training. LLaMA 3.2-Vision builds on pretrained LLaMA 3.1 [16] text models by adding image
adapters and encoders. It is first pretrained on large-scale noisy image-text data, then finetuned on
high-quality in-domain datasets for strong language and visual reasoning performance.

A.3 Training Details

We build on the TRL [44] SFTTrainer and its example VLM training script. Unless otherwise noted,
we use default SFTTrainer hyperparameters; the rest are listed in Table 2. Per-model settings and
compute requirements are listed in Table 3. Each model is fine-tuned with 5 random seeds per split
factor; the plots in our paper show the mean and standard deviation.

Hyperparameter Value

Batch Size 8

Learning Rate 1e-5
Mixed Precision bf16

Epoch 15 if f = 1

5 otherwise

Table 2: Hyperparameters.

A.4 Additional Results

Visual stitching performance is sensitive to learning rates. Visual stitching is highly sensitive to
learning rate (Figure 14). At 1e-6 and 5e-6, the model completely fails on reference-based stitching,
even when trained on full images (f = 1). We then choose 1e-5 for fine-tuning throughout our
experiments as it offers the best stability and performance.

Including positional locations in finetuning prompts hurts visual stitching performance.
Figure 12 compares visual stitching performance with and without positional information
in the finetuning template. The positional template follows: “[patch] Partial image
of food/animal/landmark (row:{row}, col:{col}), associated with {id}”, where
“[patch]” is the visual input, and “row”, “col” indicate the patch’s grid position. Models fine-tuned
with positional data perform worse, especially at lower split factors (f = 2, 4). At higher split factors
(f = 8), where performance nears random, the impact becomes negligible.

Rank evaluation throughout finetuning. While the main text reports mean rank at convergence,
here we show raw evaluation curves during training for Qwen2-VL-7b under different split factors.
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Model Name DeepSpeed GPUs

Qwen2-VL-2B ZeRO-2 2

Qwen2-VL-7B ZeRO-2 4

Qwen2-VL-72B ZeRO-3 24

Qwen2.5-VL-3B-Instruct ZeRO-2 2

Qwen2.5-VL-7B-Instruct ZeRO-2 4

Qwen2.5-VL-32B-Instruct ZeRO-3 16

Qwen2.5-VL-72B-Instruct ZeRO-3 24

gemma-3-4b-pt ZeRO-2 4

gemma-3-12b-pt ZeRO-2 8

gemma-3-27b-pt ZeRO-3 16

Llama-3.2-11B-Vision ZeRO-2 8

Llama-3.2-90B-Vision ZeRO-3 32

llava-1.5-7b-hf ZeRO-2 8

llava-1.5-13b-hf ZeRO-3 8

llava-v1.6-vicuna-7b-hf ZeRO-2 8

llava-v1.6-vicuna-13b-hf ZeRO-3 8

llava-v1.6-34b-hf ZeRO-3 24

InternVL3-1B ZeRO-2 2

InternVL3-8B ZeRO-2 8

InternVL3-14B ZeRO-3 8

Table 3: Per-model configurations including DeepSpeed [45] configs and GPUs.

Complete intra-family experiment results. Figure 3 in the main text presents results for four
selected models. Figure 11 shows the full results for all models.

B Implications of Visual Stitching on VLM Safety

B.1 Dataset Details

We construct a dataset of 20 dangerous images: 10 sex-related from the MultiTrust benchmark [46],
and 10 violence-related from horror films listed at https://mikepwilliams-uk.tumblr.com/
post/139723492184/10-of-the-goriest-deaths-in-horror-film-history. Figure 15
visualizes the censored version of these images as well as their patches that evade (i.e., classified as
“safe”) the OpenAI Moderation API [1].

B.2 Additional Results

Finetuning on filtered patches enables harmful knowledge acquisition. Figure 7 in the main
text presents results for Qwen2-VL-7B. Figure 16 shows the full results for other models.
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Figure 11: Intra-family model comparison of mean ranks for the correct ID (lower is better).
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Figure 12: Mean ranks for the correct ID (lower is better) after finetuning w/ and
w/o location. The location-aware finetuning template is “[patch] Partial image of
food/animal/landmark (row:{row}, col:{col}), associated with {id}”. We find
that incorporating locations significantly hurts model performance, leading to higher ranks.
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Figure 13: Mean ranks during Qwen2-VL-7B finetuning at different split factors. Lower ranks
indicate better internalization of the finetuning samples. Model performance is consistent across 5
different random seeds, and convergence is typically achieved in fewer than 5 epochs.
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Figure 14: Mean ranks during Qwen2-VL-7B finetuning at different learning rates on full images
(f = 1). Visual stitching performance is highly sensitive to learning rate.
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Figure 15: Censored examples of 20 dangerous images and their patches that evaded the OpenAI
Moderation API (white patches indicate those flagged as dangerous).
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Figure 16: Mean ranks of the correct text (lower is better) after finetuning different models on
(patch, text) pairs, with and without OpenAI Moderation API filtering. Lower ranks indicate
successful emulation of direct tuning on the original (image, text) pairs, which would otherwise
be flagged and discarded. See Figure 16 for results on other models.
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